બિંદુ $P\left( {\sqrt 2 ,\sqrt 3 } \right)$ માંથી પસાર થતા અતિવલયની નાભિઓ $\left( { \pm 2,0} \right)$ આગળ છે. તો આ અતિવલયને બિંદુ $P $ આગળનો સ્પર્શક . . . . બિદુંમાંથી પણ પસાર થાય છે. .

  • [JEE MAIN 2017]
  • A

    $\left( { - \sqrt 2 , - \sqrt 3 } \right)$

  • B

    $\left( {3\sqrt 2 ,2\sqrt 3 } \right)$

  • C

    $\left( {2\sqrt 2 ,3\sqrt 3 } \right)$

  • D

    $\left( {3,\sqrt 2 } \right)$

Similar Questions

વક્ર $ y^2 = 8x$  અને  $xy = -1$ ના સામાન્ય સ્પર્શકનું સમીકરણ.....

$\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$ ના અનંતસ્પર્શકો વચ્ચેનો ખૂણો ${\text{ = }}\,...........$

આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો :  શિરોબિંદુઓ  $(\pm 7,\,0)$,  $e=\frac{4}{3}$

ધારો કે અતિવલય ${x^2}\,\, - \,\,2{y^2}\,\, - \,\,2\sqrt 2 \,x\,\, - \,\,4\,\,\sqrt 2 \,\,y\,\, - \,\,6\,\, = \,\,0$ નું એક શિરોબિંદુ $A$ આગળ છે. બિંદુ $A$ ની નજીક નું  નાભિલંબનું એક અંત્યબિંદુ $B$ લો. જો $C$ એ બિંદુ $A$ ની સૌથી નજીકની અતિવલયની નાભિ હોય, તો ત્રિકોણ $ABC$ નું ક્ષેત્રફળ મેળવો.

અહી અતિવલય $H : \frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ એ બિંદુ $(2 \sqrt{2},-2 \sqrt{2})$ માંથી પસાર થાય છે. પરવલય દોરવામાં આવે છે કે જેથી તેની નાભીએ $H$ ની ધન $x$-યામ વાળી નાભી હોય છે અને પરવલયની નિયમિકાએ $H$ ની બીજી નાભીમાંથી પસાર થાય છે. જો પરવલયની નાભીલંબની લંબાઈએ $H$ ની નાભીલંબની લંબાઈ કરતાં $e$ ગણી છે કે જ્યાં $e$ એ અતિવલય $H$ ની ઉત્કેન્દ્રિતા છે તો આપેલ પૈકી ક્યૂ બિંદુ પરવલય પર આવેલ છે ?

  • [JEE MAIN 2022]